Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sheng Li Xue Bao ; 76(2): 319-328, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658380

ABSTRACT

Liver cancer is a common tumor of digestive system. Hepatocellular carcinoma (HCC) is a common type of liver cancer, which has a high degree of malignancy and ranks among the top causes of cancer-related death in the world. Metabolic reprogramming is considered to be an important marker of carcinogenesis. Glucose metabolism is one of the main ways for cells to produce energy. Glycolysis, as the basic reaction of glucose metabolism, plays an important role in cell metabolism. Therefore, the regulation of glycolysis is of great significance to the proliferation and evolution of tumors. More and more non-coding RNAs (ncRNA) have been proved to play an important role in the regulation of tumor glycolysis. This article reviews the role of ncRNA in the regulation of HCC glycolysis and its related mechanisms. At the same time, the prospect of targeted therapy for HCC based on the related mechanisms of glycolysis regulation is put forward.


Subject(s)
Carcinoma, Hepatocellular , Glycolysis , Liver Neoplasms , RNA, Untranslated , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Gene Expression Regulation, Neoplastic , Animals
2.
mSystems ; 9(1): e0116923, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38108668

ABSTRACT

The microbiota plays an important role in both hypertension (HTN) and periodontitis (PD), and PD exacerbates the development of HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, which is also a member of the microbiota. We collected 180 samples of subgingival plaques, saliva, and feces from a cohort of healthy subjects (nHTNnPD), subjects with HTN (HTNnPD) or PD (PDnHTN), and subjects with both HTN and PD (HTNPD). We performed metagenomic sequencing to assess the roles of the oral and gut viromes in HTN and PD. The HTNnPD, PDnHTN, and HTNPD groups all showed significantly distinct beta diversity from the nHTNnPD group in saliva. We analyzed alterations in oral and gut viral composition in HTN and/or PD and identified significantly changed viruses in each group. Many viruses across three sites were significantly associated with blood pressure and other clinical parameters. Combined with these clinical associations, we found that Gillianvirus in subgingival plaques was negatively associated with HTN and that Torbevirus in saliva was positively associated with HTN. We found that Pepyhexavirus from subgingival plaques was indicated to be transferred to the gut. We finally evaluated viral-bacterial transkingdom interactions and found that viruses and bacteria may cooperate to affect HTN and PD. Correspondingly, HTN and PD may synergize to improve communications between viruses and bacteria.IMPORTANCEPeriodontitis (PD) and hypertension (HTN) are both highly prevalent worldwide and cause serious adverse outcomes. Increasing studies have shown that PD exacerbates HTN by oral and gut microbiota. Previous studies have focused on exploring the importance of the bacteriome in HTN and PD but overlooked the impact of the virome, even though viruses are common inhabitants in humans. Alterations in oral and gut viral diversity and composition contribute to diseases. The present study, for the first time, profiled the oral and gut viromes in HTN and/or PD. We identified key indicator viruses and their clinical implications in HTN and/or PD. We also investigated interactions between viruses and bacteria. This work improved the overall understanding of the viromes in HTN and PD, providing vital insights into the role of the virome in the development of HTN and PD.


Subject(s)
Hypertension , Microbiota , Periodontitis , Viruses , Humans , Virome , Viruses/genetics , Microbiota/genetics
3.
Heliyon ; 9(12): e23040, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144289

ABSTRACT

Evidence suggests that the DNA of oral pathogens is detectable in the dilated aortic tissue of abdominal aortic aneurysm (AAA), one of the most fatal cardiovascular diseases. However, the association between oral microbial homeostasis and aneurysm formation remains largely unknown. In this study, a cohort of individuals, including 53 AAA patients and 30 control participants (CTL), was recruited for salivary microbiota investigation by 16S rRNA gene sequencing and bioinformatics analysis. Salivary microbial diversity was decreased in AAA compared with CTL, and the microbial structures were significantly separated between the two groups. Additionally, significant taxonomic and functional changes in the salivary microbiota of AAA participants were observed. The genera Streptococcus and Gemella were remarkably enriched, while Selenomonas, Leptotrichia, Lautropia and Corynebacterium were significantly depleted in AAA. Co-occurrence network analysis showed decreased potential interactions among the differentially abundant microbial genera in AAA. A machine-learning model predicted AAA using the combination of 5 genera and 14 differentially enriched functional pathways, which could distinguish AAA from CTL with an area under the receiver-operating curve of 90.3 %. Finally, 16 genera were found to be significantly positively correlated with the morphological parameters of AAA. Our study is the first to show that AAA patients exhibit oral microbial dysbiosis, which has high predictive power for AAA, and the over-representation of specific salivary bacteria may be associated with AAA disease progression. Further studies are needed to better understand the function of putative oral bacteria in the etiopathogenesis of AAA. Importance: Host microbial dysbiosis has recently been linked to AAA as a possible etiology. To our knowledge, studies of the oral microbiota and aneurysms remain scarce, although previous studies have indicated that the DNA of some oral pathogens is detectable in aneurysms by PCR method. We take this field one step further by investigating the oral microbiota composition of AAA patients against control participants via high-throughput sequencing technologies and unveiling the potential microbial biomarker associated with AAA formation. Our study will provide new insights into AAA etiology, treatment and prevention from a microecological perspective and highlight the effects of oral microbiota on vascular health.

4.
Microbiome ; 11(1): 254, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978405

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common chronic neurological disorder with a high risk of disability and no cure. Periodontitis is an infectious bacterial disease occurring in periodontal supporting tissues. Studies have shown that periodontitis is closely related to PD. However, direct evidence of the effect of periodontitis on PD is lacking. Here, we demonstrated that ligature-induced periodontitis with application of subgingival plaque (LIP-SP) exacerbated motor dysfunction, microglial activation, and dopaminergic neuron loss in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. RESULTS: The 16S rRNA gene sequencing revealed that LIP-SP induced oral and gut dysbiosis. Particularly, Veillonella parvula (V. parvula) and Streptococcus mutans (S. mutans) from oral ligatures were increased in the fecal samples of MPTP + LIP-SP treated mice. We further demonstrated that V. parvula and S. mutans played crucial roles in LIP-SP mediated exacerbation of motor dysfunction and neurodegeneration in PD mice. V. parvula and S. mutans caused microglial activation in the brain, as well as T helper 1 (Th1) cells infiltration in the brain, cervical lymph nodes, ileum and colon in PD mice. Moreover, we observed a protective effect of IFNγ neutralization on dopaminergic neurons in V. parvula- and S. mutans-treated PD mice. CONCLUSIONS: Our study demonstrates that oral pathogens V. parvula and S. mutans necessitate the existence of periodontitis to exacerbate motor dysfunction and neurodegeneration in MPTP-induced PD mice. The underlying mechanisms include alterations of oral and gut microbiota, along with immune activation in both brain and peripheral regions. Video Abstract.


Subject(s)
Parkinson Disease , Periodontitis , Mice , Animals , Th1 Cells , RNA, Ribosomal, 16S/genetics , Dopamine , Mice, Inbred C57BL , Disease Models, Animal
5.
Nutrients ; 15(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37432207

ABSTRACT

Hypertension is closely related to metabolic dysregulation, which is associated with microbial dysbiosis and altered host-microbiota interactions. However, plasma metabolite profiles and their relationships to oral/gut microbiota in hypertension have not been evaluated in depth. Plasma, saliva, subgingival plaques, and feces were collected from 52 hypertensive participants and 24 healthy controls in a cross-sectional cohort. Untargeted metabolomic profiling of plasma was performed using high-performance liquid chromatography-mass spectrometry. Microbial profiling of oral and gut samples was determined via 16S rRNA and metagenomic sequencing. Correlations between metabolites and clinic parameters/microbiota were identified using Spearman's correlation analysis. Metabolomic evaluation showed distinct clusters of metabolites in plasma between hypertensive participants and control participants. Hypertensive participants had six significantly increased and thirty-seven significantly decreased plasma metabolites compared to controls. The plasma metabolic similarity significantly correlated with the community similarity of microbiota. Both oral and gut microbial community composition had significant correlations with metabolites such as Sphingosine 1-phosphate, a molecule involved in the regulation of blood pressure. Plasma metabolites had a larger number of significant correlations with bacterial genera than fungal genera. The shared oral/gut bacterial genera had more correlations with metabolites than unique genera but shared fungal genera and metabolites did not show clear clusters. The hypertension group had fewer correlations between plasma metabolites and bacteria/fungi than controls at species level. The integrative analysis of plasma metabolome and oral/gut microbiome identified unreported alterations of plasma metabolites in hypertension and revealed correlations between altered metabolites and oral/gut microbiota. These observations suggested metabolites and microbiota may become valuable targets for therapeutic and preventive interventions of hypertension.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Microbiota , Humans , Cross-Sectional Studies , RNA, Ribosomal, 16S/genetics
6.
Article in English | MEDLINE | ID: mdl-37170873

ABSTRACT

A taxonomic study was carried out on strain yzlin-01T, isolated from Dongshan Island seawater. The bacterium was Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, and motile by polar flagella. Growth was observed at temperatures of 10-40 °C, at salinities of 0.5-18 %, and at pH of 6-10. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain yzlin-01T belonged to the genus Halomonas, with the highest sequence similarity to Halomonas malpeensis YU-PRIM-29T (96.7 %), followed by Halomonas johnsoniae T68687T (96.4 %) and Halomonas gomseomensis M12T (96.4 %), and other species of the genus Halomonas (93.4-96.3 %). The ANI and digital DNA-DNA hybridization estimate values between strain yzlin-01T and the closest type strain Halomonas malpeensis YU-PRIM-29T were 77.44 and 21.6 %, respectively. The principal fatty acids were summed feature 8 (consisting of C18 : 1 ω7c and/or C18 : 1 ω6c; 55.7 %), C16 : 0 (20.6 %), C12 : 0 3-OH (6.8 %), summed feature 3 (consisting of C16 : 1 ω7c and/or C16 : 1 ω6c; 5.1 %). The G+C content of the chromosomal DNA was 60.0 mol %. The respiratory quinone was identified as Q-9 (100 %). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, and three unidentified phospholipids were present. Combined genotypic and phenotypic data suggest that strain yzlin-01T represents a novel species within the genus Halomonas, for which the name Halomonas dongshanensis sp. nov. is proposed, with the type strain yzlin-01T (=GDMCC 1.3202T=KCTC 92467T).


Subject(s)
Fatty Acids , Halomonas , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Seawater/microbiology
7.
Cardiovasc Res ; 119(8): 1706-1717, 2023 07 06.
Article in English | MEDLINE | ID: mdl-36943793

ABSTRACT

AIMS: Positive associations between periodontitis (PD) and atherosclerosis have been established, but the causality and mechanisms are not clear. We aimed to explore the causal roles of PD in atherosclerosis and dissect the underlying mechanisms. METHODS AND RESULTS: A mouse model of PD was established by ligation of molars in combination with application of subgingival plaques collected from PD patients and then combined with atherosclerosis model induced by treating atheroprone mice with a high-cholesterol diet (HCD). PD significantly aggravated atherosclerosis in HCD-fed atheroprone mice, including increased en face plaque areas in whole aortas and lesion size at aortic roots. PD also increased circulating levels of triglycerides and cholesterol, hepatic levels of cholesterol, and hepatic expression of rate-limiting enzymes for lipogenesis. Using 16S ribosomal RNA (rRNA) gene sequencing, Fusobacterium nucleatum was identified as the most enriched PD-associated pathobiont that is present in both the oral cavity and livers. Co-culture experiments demonstrated that F. nucleatum directly stimulated lipid biosynthesis in primary mouse hepatocytes. Moreover, oral inoculation of F. nucleatum markedly elevated plasma levels of triglycerides and cholesterol and promoted atherogenesis in HCD-fed ApoE-/- mice. Results of RNA-seq and Seahorse assay indicated that F. nucleatum activated glycolysis, inhibition of which by 2-deoxyglucose in turn suppressed F. nucleatum-induced lipogenesis in hepatocytes. Finally, interrogation of the molecular mechanisms revealed that F. nucleatum-induced glycolysis and lipogenesis by activating PI3K/Akt/mTOR signalling pathway in hepatocytes. CONCLUSIONS: PD exacerbates atherosclerosis and impairs lipid metabolism in mice, which may be mediated by F. nucleatum-promoted glycolysis and lipogenesis through PI3K/Akt/mTOR signalling in hepatocytes. Treatment of PD and specific targeting of F. nucleatum are promising strategies to improve therapeutic effectiveness of hyperlipidaemia and atherosclerosis.


Subject(s)
Atherosclerosis , Periodontitis , Mice , Animals , Fusobacterium nucleatum/genetics , Lipogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Mice, Knockout, ApoE , Atherosclerosis/etiology , Liver , Triglycerides , TOR Serine-Threonine Kinases
8.
Can J Cardiol ; 39(5): 593-604, 2023 05.
Article in English | MEDLINE | ID: mdl-36669686

ABSTRACT

BACKGROUND: Mineralocorticoid receptor (MR) antagonists have been widely used to treat heart failure (HF). Studies have shown that MR in T cells plays important roles in hypertension and myocardial hypertrophy. However, the function of T-cell MR in myocardial infarction (MI) has not been elucidated. METHODS: In this study, we used T-cell MR knockout (TMRKO) mouse to investigate the effects of T-cell MR deficiency on MI and to explore the underlying mechanisms. Echocardiography and tissue staining were used to assess cardiac function, fibrosis, and myocardial apoptosis after MI. Flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect immune cell infiltration and inflammation. RESULTS: T-cell MR deficiency significantly improved cardiac function, promoted myocardial repair, and inhibited myocardial apoptosis, fibrosis, and inflammation after MI. Luminex assays revealed that TMRKO mice had significantly lower levels of interferon-gamma (IFN-γ) and interleukin-6 (IL-6) in serum and infarcted myocardium than littermate control mice. In cultured splenic T cells, MR deficiency suppressed IL-6 expression, whereas MR overexpression enhanced IL-6 expression. Chromatin immunoprecipitation (ChIP) assay demonstrated that MR bound to the MR response element on the promoter of IL-6 gene. Finally, T-cell MR deficiency significantly suppressed accumulation of macrophages in infarcted myocardium and differentiation of proinflammatory macrophages, thereby alleviating the consequences of MI. CONCLUSIONS: T-cell MR deficiency improved pathologic ventricular remodelling after MI, likely through inhibition of accumulation and differentiation of proinflammatory macrophages. At the molecular level, MR may work through IFN-γ and IL-6 in T cells to exert functions in MI.


Subject(s)
Interleukin-6 , Myocardial Infarction , Mice , Animals , Ventricular Remodeling , Receptors, Mineralocorticoid/genetics , Myocardial Infarction/metabolism , Myocardium/pathology , T-Lymphocytes/metabolism , Interferon-gamma , Fibrosis , Disease Models, Animal , Mice, Inbred C57BL
9.
J Adv Res ; 43: 147-161, 2023 01.
Article in English | MEDLINE | ID: mdl-36585105

ABSTRACT

INTRODUCTION: Considerable evidence has linked periodontitis (PD) to hypertension (HTN), but the nature behind this connection is unclear. Dysbiosis of oral microbiota leading to PD is known to aggravate different systematic diseases, but the alteration of oral microbiota in HTN and their impacts on blood pressure (BP) remains to be discovered. OBJECTIVES: To characterize the alterations of oral and gut microbiota and their roles in HTN. METHODS: We performed a cross-sectional (95 HTN participants and 39 controls) and a 6-month follow-up study (52 HTN participants and 26 controls) to analyze the roles of oral and gut microbiota in HTN. Saliva, subgingival plaques, and feces were collected for 16S rRNA gene sequencing or metagenomic analysis. C57BL/6J mice were pretreated with antibiotics to deplete gut microbiota, and then transplanted with human saliva by gavage to test the impacts of abnormal oral-gut microbial transmission on HTN. RESULTS: BP in participants with PD was higher than no PD in both cross-sectional and follow-up cohort. Relative abundances of 14 salivary genera, 15 subgingival genera and 10 gut genera significantly altered in HTN and those of 7 salivary genera, 12 subgingival genera and 6 gut genera significantly correlated with BP. Sixteen species under 5 genera were identified as oral-gut transmitters, illustrating the presence of oral-gut microbial transmission in HTN. Veillonella was a frequent oral-gut transmitter stably enriched in HTN participants of both cross-sectional and follow-up cohorts. Saliva from HTN participants increased BP in hypertensive mice. Human saliva-derived Veillonella successfully colonized in mouse gut, more abundantly under HTN condition. CONCLUSIONS: PD and oral microbiota are strongly associated with HTN, likely through oral-gut transmission of microbes. Ectopic colonization of saliva-derived Veillonella in the gut may aggravate HTN. Therefore, precise manipulations of oral microbiota and/or oral-gut microbial transmission may be useful strategies for better prevention and treatment of HTN.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Microbiota , Periodontitis , Humans , Animals , Mice , Gastrointestinal Microbiome/physiology , RNA, Ribosomal, 16S/genetics , Cross-Sectional Studies , Follow-Up Studies , Mice, Inbred C57BL
10.
Microbiol Spectr ; 11(1): e0195622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36475759

ABSTRACT

The mycobiome is an essential constituent of the human microbiome and is associated with various diseases. However, the role of oral and gut fungi in hypertension (HTN) remains largely unexplored. In this study, saliva, subgingival plaques, and feces were collected from 36 participants with HTN and 24 healthy controls for metagenomic sequencing. The obtained sequences were analyzed using the Kraken2 taxonomic annotation pipeline to assess fungal composition and diversity. Correlations between oral and gut fungi and clinic parameters, between fungi within the same sample types, and between different sample types were identified by Spearman's correlation analysis. Overall, the subgingival fungal microbiome had substantially higher alpha diversity than the salivary and fecal fungal microbiomes. The fungal microbiomes of the three sample types displayed distinct beta diversity from each other. Oral fungi but not gut fungi in HTN had beta diversity significantly different from that of controls. Among the fungi shared in the oral cavity and gut, Exophiala was the genus with the most notable changes. Exophiala spinifera was the most abundant salivary species in HTN. Some fungal species directly correlated with blood pressure, including gut Exophiala xenobiotica and Exophiala mesophila. The markedly impaired ecological cocorrelation networks of oral and gut fungi in HTN suggested compromised association among fungal species. Most fungi were shared in the oral cavity and gut, and their correlations suggested the potential interplays between oral and gut fungi. In conclusion, the oral cavity and intestine have unique fungal ecological environments. The fungal enrichment and ecology in HTN, the correlations between oral and gut fungi, and the associations between oral and gut fungi and clinical parameters suggest an important role that the fungal microbiome may play in HTN. IMPORTANCE Our study fills the gap in human studies investigating the oral and gut fungal microbiota in association with blood pressure. It characterizes the diversity and composition of the oral and gut fungal microbiome in human subjects, elucidates the dysbiosis of fungal ecology in a hypertensive population, and establishes oral-gut fungal correlations and fungus-clinical parameter correlations. Targeting fungi in the oral cavity and/or gut may provide novel strategies for the prevention and treatment of hypertension.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Microbiota , Mycobiome , Humans , Gastrointestinal Microbiome/physiology , Mouth , Feces/microbiology , Fungi/genetics
11.
Stem Cell Rev Rep ; 19(1): 188-200, 2023 01.
Article in English | MEDLINE | ID: mdl-35781607

ABSTRACT

Human dental pulp stem cells (hDPSCs) are considered promising multipotent cell sources for tissue regeneration. Regulation of apoptosis and maintaining the cell homeostasis is a critical point for the application of hDPSCs. Osteomodulin (OMD), a member of the small leucine-rich proteoglycan family, was proved an important regulatory protein of hDPSCs in our previous research. Thus, the role of OMD in the apoptosis of hDPSCs was explored in this study. The expression of OMD following apoptotic induction was investigated and then the hDPSCs stably overexpressing or knocking down OMD were established by lentiviral transfection. The proportion of apoptotic cells and apoptosis-relative genes and proteins were examined with flow cytometry, Hoechst staining, Caspase 3 activity assay, qRT-PCR and western blotting. RNA-Seq analysis was used to explore possible biological function and mechanism. Results showed that the expression of OMD decreased following the apoptotic induction. Overexpression of OMD enhanced the viability of hDPSCs, decreased the activity of Caspase-3 and protected hDPSCs from apoptosis. Knockdown of OMD showed the opposite results. Mechanistically, OMD may act as a negative modulator of apoptosis via activation of the Akt/Glycogen synthase kinase 3ß (GSK-3ß)/ß-Catenin signaling pathway and more functional and mechanistic possibilities were revealed with RNA-Seq analysis. The present study provided evidence of OMD as a negative regulator of apoptosis in hDPSCs. Akt/GSK-3ß/ß-Catenin signaling pathway was involved in this process and more possible mechanism detected needed further exploration. This anti-apoptotic function of OMD provided a promising application prospect for hDPSCs in tissue regeneration.


Subject(s)
Cisplatin , beta Catenin , Humans , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Dental Pulp , Apoptosis/genetics , Stem Cells
12.
Cell Death Differ ; 30(3): 618-631, 2023 03.
Article in English | MEDLINE | ID: mdl-36151473

ABSTRACT

Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays critical roles in the pathogenesis of aortic aneurysm (AA). The function of nuclear receptor corepressor1 (NCOR1) in regulation of VSMC phenotype and AA is unclear. Herein, using smooth muscle NCOR1 knockout mice, we demonstrated that smooth muscle NCOR1 deficiency decreased both mRNA and protein levels of contractile genes, impaired stress fibers formation and RhoA pathway activation, reduced synthesis of elastin and collagens, and induced the expression and activity of MMPs, manifesting a switch from contractile to degradative phenotype of VSMCs. NCOR1 modulated VSMC phenotype through 3 different mechanisms. First, NCOR1 deficiency increased acetylated FOXO3a to inhibit the expression of Myocd, which downregulated contractile genes. Second, deletion of NCOR1 derepressed NFAT5 to induce the expression of Rgs1, thus impeding RhoA activation. Third, NCOR1 deficiency increased the expression of Mmp12 and Mmp13 by derepressing ATF3. Finally, a mouse model combined apoE knockout mice with angiotensin II was used to study the role of smooth muscle NCOR1 in the development of AA. The results showed that smooth muscle NCOR1 deficiency increased the incidence of aortic aneurysms and exacerbated medial degeneration in angiotensin II-induced AA mouse model. Collectively, our data illustrated that NCOR1 interacts with FOXO3a, NFAT5, and ATF3 to maintain contractile phenotype of VSMCs and suppress AA development. Manipulation of smooth muscle NCOR1 may be a potential approach for AA treatment.


Subject(s)
Aortic Aneurysm , Muscle, Smooth, Vascular , Mice , Animals , Muscle, Smooth, Vascular/metabolism , Angiotensin II/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Mice, Knockout , Phenotype , Mice, Knockout, ApoE , Homeostasis , Cells, Cultured , Nuclear Receptor Co-Repressor 1/metabolism
13.
Front Neurosci ; 16: 876582, 2022.
Article in English | MEDLINE | ID: mdl-35663549

ABSTRACT

Although epidemiological studies suggest that periodontitis is tightly associated with ischemic stroke, its impact on ischemic stroke and the underlysing mechanisms are poorly understood. Recent studies have shown that alteration in gut microbiota composition influences the outcomes of ischemic stroke. In the state of periodontitis, many oral pathogenic bacteria in the saliva are swallowed and transmitted to the gut. However, the role of periodontitis microbiota in the pathogenesis and progression of ischemic stroke is unclear. Therefore, we hypothesized that the periodontitis salivary microbiota influences the gut immune system and aggravates ischemic stroke. Mice receiving gavage of periodontitis salivary microbiota showed significantly worse stroke outcomes. And these mice also manifested more severe neuroinflammation, with higher infiltration of inflammatory cells and expression of inflammatory cytokines in the ischemic brain. More accumulation of Th17 cells and IL-17+ γδ T cells were observed in the ileum. And in Kaede transgenic mice after photoconversion. Migration of CD4+ T cells and γδ T cells from the ileum to the brain was observed after ischemic stroke in photoconverted Kaede transgenic mice. Furthermore, the worse stroke outcome was abolished in the IL-17A knockout mice. These findings suggest that periodontitis salivary microbiota increased IL-17A-producing immune cells in the gut, likely promoted the migration of these cells from the gut to the brain, and subsequently provoked neuroinflammation after ischemic stroke. These findings have revealed the role of periodontitis in ischemic stroke through the gut and provided new insights into the worse outcome of ischemic stroke coexisting with periodontitis in clinical trials.

14.
Biomed Pharmacother ; 150: 113012, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35658246

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor highly prevalent in Southeast Asia. The distant metastasis and disease recurrence are still unsolved clinical problems. In recent years, traditional Chinese medicine (TCM) monomers have become significantly attractive due to their advantages. Using high throughput drug sensitivity screening, we identified gambogic acid (GA) as a common TCM monomer displaying multiple anti-NPC effects. GA could effectively inhibit the proliferation of low differentiated cells and highly metastatic cells in NPC via inducing apoptosis and G2/M cell cycle arrest. In addition, GA obviously repressed the abilities of cell clone, migration, invasion, angiogenesis and represented satisfied synergistic effects combined with chemotherapy. Importantly, we found the elevated immune checkpoint CD47 stimulated after chemotherapy was dramatically impaired by GA treatment. Mechanically, the network pharmacology analyses unraveled that the oncogenic signaling pathways including STATs were rewired by GA treatment. Taken together, our study reveals a molecular basis and provides a rationale for GA application as the treatment regime in NPC therapy in future.


Subject(s)
Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Cell Line, Tumor , Cell Proliferation , Humans , Monitoring, Immunologic , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Xanthones
15.
J Mol Cell Cardiol ; 167: 40-51, 2022 06.
Article in English | MEDLINE | ID: mdl-35314145

ABSTRACT

RATIONALE: Mineralocorticoid receptor (MR) antagonists have been clinically used to treat heart failure. However, the underlying cellular and molecular mechanisms remain incompletely understood. METHODS AND RESULTS: Using osteoblast MR knockout (MRobko) mouse in combination with myocardial infarction (MI) model, we demonstrated that MR deficiency in osteoblasts significantly improved cardiac function, promoted myocardial healing, as well as attenuated cardiac hypertrophy, fibrosis and inflammatory response after MI. Gene expression profiling using RNA sequencing revealed suppressed expression of osteocalcin (OCN) in calvaria from MRobko mice compared to littermate control (MRfl/fl) mice with or without MI. Plasma levels of undercarboxylated OCN (ucOCN) were also markedly decreased in MRobko mice compared to MRfl/fl mice. Administration of ucOCN abolished the protective effects of osteoblast MR deficiency on infarcted hearts. Mechanistically, ucOCN treatment promoted proliferation and inflammatory cytokine secretion in macrophages. Spironolactone, an MR antagonist, significantly inhibited the expression and secretion of OCN in post-MI mice. More importantly, spironolactone decreased plasma levels of ucOCN and inflammatory cytokines in heart failure patients. CONCLUSIONS: MR deficiency in osteoblasts alleviates pathological ventricular remodeling after MI, likely through its regulation on OCN. Spironolactone may work through osteoblast MR/OCN axis to exert its therapeutic effects on pathological ventricular remodeling and heart failure in mice and human patients.


Subject(s)
Heart Failure , Myocardial Infarction , Animals , Humans , Mice , Mineralocorticoid Receptor Antagonists/pharmacology , Myocardial Infarction/pathology , Osteoblasts/metabolism , Spironolactone , Ventricular Remodeling
16.
J Cardiovasc Transl Res ; 15(4): 816-827, 2022 08.
Article in English | MEDLINE | ID: mdl-35040081

ABSTRACT

Microglia/macrophage activation plays an essential role in Ischemic stroke (IS). Nuclear receptor corepressor 1 (NCoR1) has been identified as a vital regulator in macrophages. The present study aims to explore the functions of macrophage NCoR1 in IS. Macrophage NCoR1 knockout (MNKO) mice and littermate control mice were subjected to middle cerebral artery occlusion (MCAO). Our data showed that macrophage NCoR1 deficiency significantly reduced the infarct size and infarct volume as well as brain edema after MCAO. Additionally, MNKO induced less microglia/macrophage infiltration and activation, neuroinflammation, apoptosis of neuronal cells, and BBB disruption in brains after IS. Mechanistic studies revealed that NCoR1 interacted with LXRß in microglia and MNKO impaired the activation of the Nuclear factor-κB signaling pathway in brains after IS. Our data demonstrated that macrophage NCoR1 deficiency inhibited microglia/macrophage activation and protected against IS. Targeting NCoR1 in microglia/macrophage may be a potential approach for IS treatment.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Mice , Animals , Mice, Inbred C57BL , Macrophages/metabolism , Infarction, Middle Cerebral Artery/genetics , Mice, Knockout , Stroke/genetics , Stroke/prevention & control , Nuclear Receptor Co-Repressor 1/genetics
17.
Front Cell Infect Microbiol ; 11: 643092, 2021.
Article in English | MEDLINE | ID: mdl-33768014

ABSTRACT

Rheumatic heart disease refers to the long-term damage of heart valves and results from an autoimmune response to group A Streptococcus infection. This study aimed to analyze the microbiota composition of patients with rheumatic heart disease and explore potential function of microbiota in this disease. First, we revealed significant alterations of microbiota in feces, subgingival plaques, and saliva of the patients compared to control subjects using 16S rRNA gene sequencing. Significantly different microbial diversity was observed in all three types of samples between the patients and control subjects. In the gut, the patients possessed higher levels of genera including Bifidobacterium and Eubacterium, and lower levels of genera including Lachnospira, Bacteroides, and Faecalibacterium. Coprococcus was identified as a super-generalist in fecal samples of the patients. Significant alterations were also observed in microbiota of subgingival plaques and saliva of the patients compared to control subjects. Second, we analyzed microbiota in mitral valves of the patients and identified microbes that could potentially transmit from the gut or oral cavity to heart valves, including Streptococcus. Third, we further analyzed the data using random forest model and demonstrated that microbiota in the gut, subgingival plaque or saliva could distinguish the patients from control subjects. Finally, we identified gut/oral microbes that significantly correlated with clinical indices of rheumatic heart disease. In conclusion, patients with rheumatic heart disease manifested important alterations in microbiota that might distinguish the patients from control subjects and correlated with severity of this disease.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Rheumatic Heart Disease , Feces , Humans , Mitral Valve , Mouth , RNA, Ribosomal, 16S
18.
Int J Clin Exp Pathol ; 7(5): 2350-60, 2014.
Article in English | MEDLINE | ID: mdl-24966945

ABSTRACT

MAGE-D4 is a novel member of MAGE super-family. It has preliminarily been demonstrated that MAGE-D4 mRNA is not expressed in majority of normal tissues except for brain and ovary in which only trace amount of MAGE-D4 mRNA can be detected, but predominantly expressed in glioma. MAGE-D4 protein expression and its immunogenicity in glioma have not been elucidated well. This study was designed to analyze MAGE-D4 expression both at mRNA and protein level, characteristic of humoral immune response, and their relationships with glioma patients' clinicopathological parameters. Recombinant MAGE-D4 protein and antiserum were generated. Quantitative RT-PCR analysis revealed that MAGE-D4 mRNA expression was overall up-regulated in 41 glioma specimens compared with that in 14 normal brain tissues. Immunohistochemistry analysis showed that 78% (21/27) glioma tissues expressed MAGE-D4 protein, which was predominantly located in the cytoplasm of tumor cells, but absent in any neuroglia cell of normal brain tissues. ELISA analysis demonstrated that humoral response against MAGE-D4 was detected in 17% (7/41) of glioma patients' sera but not in 77 healthy donors. No apparent correlation was observed between the expression and immunogenicity of MAGE-D4 with clinicopathological parameters of glioma. In summary, these results indicate that MAGE-D4 is highly expressed in glioma and can develop specifically humoral response in glioma patients, which supports that it may be a promising biomarker for glioma diagnosis and immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Brain Neoplasms/immunology , Glioma/immunology , Immunity, Humoral , Neoplasm Proteins/immunology , Adolescent , Adult , Antigens, Neoplasm/analysis , Antigens, Neoplasm/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Biopsy , Brain Neoplasms/blood , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Case-Control Studies , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation, Neoplastic , Glioma/blood , Glioma/genetics , Glioma/pathology , Humans , Immunoglobulin G/blood , Immunohistochemistry , Male , Middle Aged , Neoplasm Proteins/analysis , Neoplasm Proteins/genetics , RNA, Messenger/analysis , Real-Time Polymerase Chain Reaction , Up-Regulation , Young Adult
19.
Mol Genet Genomics ; 289(6): 1157-69, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24952483

ABSTRACT

RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta C(t) method and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.


Subject(s)
Gene Expression , Real-Time Polymerase Chain Reaction/standards , Testis/metabolism , Algorithms , Animals , DNA Primers , Male , Mice , Receptor, Angiotensin, Type 1/genetics , Reference Standards , Testis/embryology , Testis/growth & development
20.
Biologicals ; 37(5): 277-81, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19457681

ABSTRACT

DHFR-deficient Chinese hamster ovary (CHO DHFR(-)) cells are the most popular mammalian expression system for inducible amplification of transgene. In order to obtain more stable transfected CHO DHFR(-) cell clones, transfection efficiency of electroporation under different conditions were systemically investigated using plasmid pSV-beta-Gal as reporter gene. Transfection efficiency was proportionally increased with pulse duration and number of pulse applied. In addition, higher transfection efficiency was found in high salt extracellular solution (Berg's and Hank's buffers) than in intracellular solution (cytomix buffer) under the same electroporation condition. The highest transfection efficiency in examined conditions was about 1 in 350 cells (or 0.289%) when cells were electroporated with twice pulses at 400V, 375microF. The present study offers an optimized guideline for introducing exogenous DNA into CHO DHFR(-) cells by electroporation.


Subject(s)
CHO Cells , Electroporation , Gene Expression , Tetrahydrofolate Dehydrogenase/genetics , Transfection/methods , Animals , Buffers , Cricetinae , Cricetulus , Efficiency , Electroporation/methods , Genes , Genes, Reporter , Genetic Vectors , Tetrahydrofolate Dehydrogenase/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...